FIVE-PART UW ENERGY TRANSFORMATION STRATEGY

ENERGY	<section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header>	<section-header><image/><image/><text><text><text></text></text></text></section-header>	<section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header>	<section-header><text><text><text><text><text><text></text></text></text></text></text></text></section-header>	<section-header><section-header></section-header></section-header>
EINERGY SYSTEM ISSUES GREENHOUSE GAS EMISSIONS 93% of GHG emissions on campus come from the power plant. This is an opportunity to reduce those dramatically.	15% reduction in GHGs Less waste means burning less fossil fuel	<section-header>20% reduction in GHGs At lower temperature, less heat is lost from pipes that carry heat to buildings</section-header>	no additional reduction No direct impact on GHGs, but this enables waste heat recovery	45% reduction in GHGs Our electricity comes from low- or zero-emission sources	20% reduction in GHGs
ENERGY CONSUMPTION Our mild climate and low energy costs have made it less expensive to waste energy than to save it. That is changing.	30% energy reduction Efficiency reduces consumption	20% energy reduction Less loss means less energy consumption	15% energy reduction District scale chillers optimized with AI and machine learning will consume less energy	15% energy increase Heat pumps will create new electrical demand while reducing overall energy consumption	?
ELECTRICAL CAPACITY CONSTRAINT All of the electricity for the main Seattle campus comes through one location, and that location can carry a limited amount of electricity.	2% more capacity Lower consumption means lower peaks in consumption	2% Iess capacity We'll need to add electric pumps to move hot water to buildings	25% More efficient cooling will substantially reduce peak demand	30% less capacity Using heat pumps to re-use waste heat will create a new demand for electricity	?
AGING INFRASTRUCTURE Our aging energy infrastructure puts us at risk of service disruptions failure perform as expected for a major research powerhouse university.	Efficiency measure will replace aging components	 This conversion will replace aging boilers, pipes, valves, pumps, expansion tanks, and steam traps 	 This transformation will replace or eliminate aging chillers and facilitate maintenance 	Electrification will allow us to retire aging boilers	2

Currently the Seattle campus burns fossil fuels to create steam to heat 200+ buildings on campus. This is a five-part energy strategy to transition the Seattle campus off of fossil fuels to 100% clean energy.

5

L PUSH ECARBONIZATION)

e will need an alternate way produce steam needed to erilize research and medical uipment.

usly evaluate emerging gies for full decarbonization.

> This step will remove the carbon emissions from our energy system

GOAL 100% CLEAN ENERGY

ZERO GREENHOUSE GAS EMISSIONS

We have contributed to the climate crisis both by reducing our emissions as well as by blazing a path others can follow. We are no longer required to purchase expensive carbon emission allowances.

unknown impact

unknown impact

HIGH ENERGY EFFICIENCY

We have substantially reduced our energy demand, which means we are less reliant on energy infrastrucutre and less exposed to the risk of rising utility costs.

SUFFICIENT ELECTRICAL CAPACITY

This is one goal our current plan does not yet achieve, given campus growth requirements.

unknown impact

RESILIENT INFRASTRUCTURE

Our energy infrastructure is efficient, reliable and flexible setting us up well to take advantage of new developments in energy technology.